0%

LDA+U

加U体系

在平均场近似或者说是一般得LDA计算中,能带得自旋分裂是由一个称为Stoner 参数I来主导得,而且平均场近似中认为这个交换分裂能是小于带宽得,一般而言I得数值在LSDA中大概在1eV左右,这样即使对于某些氧化物如 NiO,FeO,MnO等即使能带发生交换分裂,整个体系依然是金属性得,试验观察到得这些氧化物实际上是绝缘体,主要原因在于在这些氧化物中d轨道得能级位置不是由I来决定得,而是Hubbard参数U决定,U也称为On-site Coulomb作用能,相当于把两个电子放在空间同一个位置需要得能量,U数值一般在10eV左右,如此大得分裂能足以将Fermi面附近连续分布得d能级分开,从而得到正确得基态性质,目前广泛采用得LDA+U的算法就是针对某些定域轨道,如d或者f,这些轨道占据存在强烈的在位Coulomb排斥。正是U使得带隙分裂,而不是轨道极化参量I。
U计算目前仍然是一个研究热点,最近由人采用线性响应理论,同时结合轨道束缚的DFT计算自洽的求解了部分体系的U参数,在大部分情况下U数值要根据计算结果和试验参数的符合程度而定。
LDA+U计算核心思路是:首先将研究体系的轨道分隔成两个子体系(subsystem),其中一部分是一般的DFT算法(如LSDA,GGA)等可以比较准确描述的体系,另外是定域在原子周围的轨道如d或者f轨道,这些轨道在标准的DFT计算下不能获得正确的能量与占据数之间的关系(如DFT总是认为分数占据是能量最小的,而不是整数占据);对于d或者f轨道,能带模型采用Hubbard模型,而其他轨道仍然是按照Kohn-SHam方程求解;d以及f 轨道电子之间的关联能采用一个和轨道占据以及自旋相关的有效U表示;整体计算的时候需要将原来DFT计算过程中已经包含的部分关联能扣除,这部分一般叫 Double Counting part,并且用一个新的U来表示,最终的结果是在DFT计算的基础上新增加一个和d或者f轨道直接相关的分裂势的微扰项,这部分能量可以采用一般微扰理论计算。
在CASTEP最新的版本中增加的LDA+U的计算,U参数的设置一般主要是针对过渡金属氧化物(Charge transfer type insulator),包含非满层f轨道的元素等,高温超导体强关联体系。在参数设置方面主要是需要注意d和f轨道,至于s以及p轨道一般不需要设置,当然由文献也报道p轨道的这种关联性。过渡金属氧化物的有效U如下:

Species U J U-J(UEff)
NiO 8.0 0.95 7.1
CoO 7.8 0.92 6.9
FeO 6.8 0.89 5.9
MnO 6.9 0.86 10.3
VO 6.7 0.81 5.9
TiO 6.6 0.78 5.8

Reference: Band theory and Mott insulators: Hubbard U insteat of Stoner I, PRB Vol44 No 3 (1991);
3d轨道U和J计算如下所示:主要原理是改变d轨道的占据,在自旋极化的前提下计算不同自旋轨道能量的差值提取U和J,U微Coulomb排斥能,J是交换能,U在所有电子中都存在,不管自旋是否相同,J只存在于自旋相同的电子上。
下面给出过渡金属(不包括稀土元素)U和J参数的选取(uint in Ry,1Ry=13.6eV):

3d series:
Elements U J
V 0.25 0.05
Cr 0.26 0.053
Mn 0.28 0.055
Fe 0.3 0.058
Co 0.31 0.059
Ni 0.31 0.06
4d series:
Elements U J
Nb 0.19 0.04
Mo 0.2 0.04
Tc 0.21 0.042
Ru 0.22 0.042
Rh 0.25 0.044
Pd 0.29 0.044
5d series:
Elements U J
Ta 0.19 0.039
W 0.20 0.038
Re 0.205 0.039
Os 0.2 0.039
Ir 0.21 0.038
Pt 0.215 0.038
对于其他过渡金属化合物U一般在5-10eV之间。如在PRB73,134418(2006)这个文献中作者在计算Co掺杂的ZnO时采用的U是6和 8eV。过渡金属的U数值和d电子排列以及价态有关系,因此上面给出的数值只是一个大概的估算数值,具体文献见Physical Review B Vol50,No23,1994.
LDA+U 算法主要原创作者是俄罗斯金属研究所的V.I. Anisimov,重要文献有:
Corrected atomic limit in the local density approximation and the electronic structure of d impurities in Rb, Phys.Rev.B 50,23 (1994);
Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys.Rev.B. 44 No.3 (1991);
Materials Studio 4.3版本中也给出了一些元素默认的U数值(实际是Ueff=U-J):

Element Name Atomic number Angular Momentum Hubbard U
Sc 21 d 2.5 eV
Ti 22 d 2.5 eV
V 23 d 2.5 eV
Cr 24 d 2.5 eV
Mn 25 d 2.5 eV
Fe 26 d 2.5 eV
Co 27 d 2.5 eV
Ni 28 d 2.5 eV
Cu 29 d 2.5 eV
Y 39 d 2.0 eV
Zr 40 d 2.0 eV
Nb 41 d 2.0 eV
Mo 42 d 2.0 eV
Tc 43 d 2.0 eV
Ru 44 d 2.0 eV
Rh 45 d 2.0 eV
Pd 46 d 2.0 eV
Ag 47 d 2.0 eV
Cd 48 d 2.0 eV
La 57 f 6.0 eV
Ce 58 f 6.0 eV
Pr 59 f 6.0 eV
Nd 60 f 6.0 eV
Pm 61 f 6.0 eV
Sm 62 f 6.0 eV
Eu 63 f 6.0 eV
Gd 64 f 6.0 eV
Tb 65 f 6.0 eV
Dy 66 f 6.0 eV
Ho 67 f 6.0 eV
Er 68 f 6.0 eV
Tm 69 f 6.0 eV
Yb 70 f 6.0 eV
Fr 87 f 2.0 eV
Ra 88 f 2.0 eV
Ac 89 f 2.0 eV
Th 90 f 2.0 eV
Pa 91 f 2.0 eV
U 92 f 2.0 eV
Np 93 f 2.0 eV
Pu 94 f 2.0 eV
Am 95 f 2.0 eV
Cm 96 f 2.0 eV
Bk 97 f 2.0 eV
Cf 98 f 2.0 eV
Es 99 f 2.0 eV
Fm 100 f 2.0 eV
Md 101 f 2.0 eV
No 102 f 2.0 eV

LDAUU LDAUJ 两个参数是根据体系的POTCAR 中原子的种类来确定其值的个数,也就是说如果POTCAR 有三类原子的话,你想对其中的一类原子如V 加U 修正(假设加的U 为6.0V)的话,并且V 在POSCAR 中的顺序是 第2类原子,而其他元素的原子不想加U 的话,其相应值设为0 即可。

格式为:
LDAUU = 0.00 2.00 0.00
LDAUJ = 0.00 0.20 0.00

其他的:
LDAU =.TRUE.
LDAUTYPE = 2
LDAUL =-1 3 -1

LDAUPRING =2 ,此参数一般可以不设。

总之注意加 U 要和各种元素原子对应起来,这样才行。
LDAUJ 的值一般是LDAUU 值的1/10 或稍大一些,总之前者和后者差一个数量级。
LDAU = .TRUE. Switches on the L(S)DA+U.
• LDAUTYPE = 1|2|4 Type of L(S)DA+U (Default: LDAUTYPE = 2)
1 Rotationally invariant LSDA+U according to Liechtenstein et al.
4 Idem 1., but LDA+U instead of LSDA+U (i.e. no LSDA exchange splitting)
2 Dudarev’s approach to LSDA+U (Default)
• LDAUL = L .. l-quantum number for which the on site interaction is added
(-1: no on site terms added, 1: p, 2: d, 3: f, Default: LDAUL = 2)
• LDAUU = U .. Effective on site Coulomb interaction parameter
• LDAUJ = J .. Effective on